Our bodies are wired to move, and damaged wiring is often impossible to repair. Strokes and spinal cord injuries can quickly disconnect parts of the brain that initiate movement with the nerves and muscles that execute it, and neurodegenerative disorders such as Parkinson’s disease and amyotrophic lateral sclerosis (ALS) draw the process out to the same effect. Scientists have been looking for a way to bypass damaged nerves by directly connecting the brain to an assistive device–like a robotic limb–through brain-computer interface (BCI) technology. Now, researchers have demonstrated the ability to nonintrusively record neural signals outside the skull and decode them into information that could be used to move a prosthetic. [More]
No Implants Needed: Movement-Generating Brain Waves Detected and Decoded Outside the Head
Did this article help you?
If you found this piece useful, please consider supporting our work with a small, one-time or monthly donation. Your contribution enables us to continue bringing you accurate, thought-provoking science and medical news that you can trust. Independent reporting takes time, effort, and resources, and your support makes it possible for us to keep exploring the stories that matter to you. Together, we can ensure that important discoveries and developments reach the people who need them most.