Technique could help repair severed spinal cord

Researchers have designed a method to facilitate nerve cell repair that could ultimately lead to treating severed spinal cords. The technique involves imbedding a series of fibrous rods into a gel substance and then dissolving the rods, leaving a series of longitudinal channels. These channels are then injected with peptides, molecules that stimulate cell adhesion and migration. ”When nerve cells are placed at the opening of the channel, the peptides act like breadcrumbs to follow,” says Molly Shoichet, lead author and professor of chemical engineering and applied chemistry at the University of Toronto.

From University of Toronto:
Nerve cells ‘guided’ to repair spinal damage: Technique

May lead to treatment for severed spinal cords

University of Toronto researchers have designed a method to facilitate nerve cell repair that could ultimately lead to treating severed spinal cords.

The technique, outlined in the July 6 online version of Biomaterials, involves imbedding a series of fibrous rods into a gel substance and then dissolving the rods, leaving a series of longitudinal channels. These channels are then injected with peptides, molecules that stimulate cell adhesion and migration. ”When nerve cells are placed at the opening of the channel, the peptides act like breadcrumbs to follow,” says Molly Shoichet, lead author and professor of chemical engineering and applied chemistry at U of T’s Institute for Biomaterials and Biomedical Engineering (IBBME).

According to Shoichet, the technique is part of an overall strategy to repair spinal cord injuries where the spine is cut in two. After joining the ends of the severed spine with a tube, researchers would then fill this tube with the gel channels and peptides to stimulate nerve cell growth and bridge the gap between the two ends. ”We need cells to grow in a specific direction to minimize that distance, thereby reducing the time for regeneration,” says Shoichet, who holds the Canada Research Chair in Tissue Engineering. ”A longitudinal channel – a straight line – is the minimum distance between two points.”

The research, which has yet to be tested in animal models or humans, was funded by the Natural Sciences and Engineering Research Council of Canada and an Ontario Graduate Scholarship in Science and Technology.


The material in this press release comes from the originating research organization. Content may be edited for style and length. Have a question? Let us know.

Subscribe

One email, each morning, with our latest posts. From medical research to space news. Environment to energy. Technology to physics.

Thank you for subscribing.

Something went wrong.

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.