Quantcast

Parkinson’s tracked by studying molecular changes in brain

The progress of Parkinson’s disease (PD), or any brain-wasting disease, is painful to watch in oneself or in a loved one. Physicians and researchers are not immune to that pain, but they watch the progression of disease with an eye toward understanding it and, one day, halting or reversing it.

From Society of Nuclear medicine:

Researchers monitor progression of Parkinson’s disease by studying molecular changes in brain

The progress of Parkinson’s disease (PD), or any brain-wasting disease, is painful to watch in oneself or in a loved one. Physicians and researchers are not immune to that pain, but they watch the progression of disease with an eye toward understanding it and, one day, halting or reversing it.

Johannes Schwarz, M.D., and a team of researchers from Germany and Canada reported in the October issue of The Journal of Nuclear Medicine on a study that measured the molecular changes in the brains of PD patients over a 7.5-year time span that began during the early stages of the disease. The study used single photon emission computed tomography (SPECT) to image the loss of dopamine transporter binding. (While the pathology of Parkinson’s disease is not completely understood, it is widely believed that the disease’s progression is marked by a decline in dopamine transporter binding, part of the brain’s neurotransmitter circulation system.)

The study demonstrates that it is possible to measure, quantitatively and over a significant period of time, the molecular changes that take place in the brain as it undergoes progressive deterioration.

”In effect what we are doing is developing the imaging of dopamine transport into a biomarker of disease progression,” said Dr. Schwarz. ”As a biomarker, that image provides us with much more than a picture. It gives us quantifiable data that can then be used to devise a general treatment methodology and to assess an individual patient’s status and tailor treatment to his or her specific needs.”

Being able to monitor not only the clinical aspects of the disease but also the changes that take place in the brain at the molecular level may lead eventually to the development of individualized treatment for Parkinson’s patients that will repair the damage to the brain at the molecular level and make possible the treatment of patients who have progressed beyond the earliest stages of the disease.




The material in this press release comes from the originating research organization. Content may be edited for style and length. Want more? Sign up for our daily email.