New! Sign up for our email newsletter on Substack.

Special delivery: Macromolecules via spider’s ‘bite’

Our cells are rich in proteins which are potential targets for therapy. But study of these proteins’ behavior, using externally delivered biomacromolecules, has often been stymied by the difficulty of gaining access to the interiors of living cells.

Now scientists at Kyoto University have used a reengineered spider venom peptide to deliver biomacromolecules – such as an antibody — into a cell. Their strategy, appearing in Nature Chemistry, not only allows researchers to track the antibodies visually, but also makes it possible for the antibodies to interact with target proteins, modulating their functions.

“Efficient labeling of intracellular proteins with antibodies allows us to dramatically improve our understanding of their behavior and significance,” explains first author Misao Akishiba. “Cells can take in antibodies through membrane-bound vesicles called ‘endosomes’. But normally once inside these endosomes, the antibodies have trouble escaping.”

The researchers found that a simple redesign of spider venom peptide ‘M-lycotoxin’ enables the efficient release of antibodies from their endosome cages.

“We took M-lycotoxin and replaced a leucine residue with glutamic acid, which we then called ‘L17E’,” continues Akishiba. “When L17E enters the cell, it specifically interacts with endosome membranes, breaking them down and releasing the antibodies.”

The research team then showed that functional antibodies, such as those involved in suppressing gene expression, could be delivered as well.

“This will benefit not only basic science, but also the development of new treatments and drugs,” concludes team leader Shiroh Futaki. “Moreover, this tool could potentially be used to transport other bioactive macromolecules — and even nanoparticles — into cells.”

As a next step, the researchers hope to improve the efficiency of macromolecule uptake by endosomes, thereby increasing the amount of cargo that can be transported.


Did this article help you?

If you found this piece useful, please consider supporting our work with a small, one-time or monthly donation. Your contribution enables us to continue bringing you accurate, thought-provoking science and medical news that you can trust. Independent reporting takes time, effort, and resources, and your support makes it possible for us to keep exploring the stories that matter to you. Together, we can ensure that important discoveries and developments reach the people who need them most.