Researchers observe rarest event in history of the universe

Around 1,500 meters deep in the Italian Gran Sasso mountains is the underground laboratory LNGS (Laboratori Nazionali del Gran Sasso), in which scientists search for dark matter particles in a lab sealed off from any radioactivity interference. Their tool is the XENON1T detector, the central part of which consists of a cylindrical tank of about one meter in length filled with 3200 kilograms of liquid xenon at a temperature of -95 degrees Celsius.

The rarest decay process ever measured

Until now, researchers using this detector have not yet observed any dark matter particles, but they have now managed to observe the decay of the Xenon-124 atom for the first time. The half-life time measured – i.e. the time span after which half of the radioactive atoms originally present in a sample have decayed away – is over a trillion times longer than the age of the universe, which is almost 14 billion years old. The observed process is therefore the rarest process in the universe ever to be directly seen happening in a detector. “The fact that we managed to directly observe this process demonstrates how powerful our detection method actually is – also for rare physical phenomena which are not from dark matter,” says Professor Laura Baudis, astroparticle physicist at the University of Zurich, who is one of the leading scientists on the XENON1T experiment.

A phenomenon that is hard to demonstrate

The observed process is called a double electron capture: The atomic nucleus of Xenon-124 consists of 54 positively charged protons and 70 neutral neutrons, which are surrounded by several atomic shells occupied by negatively charged electrons. In double electron capture, two protons in the nucleus simultaneously “catch” two electrons from the innermost atomic shell, transform into two neutrons, and emit two neutrinos. As two electrons are then missing in the atomic shell, the other electrons reorganize themselves, with the energy released being carried away by X-rays. However, this is a very rare process which is usually hidden by signals from the omnipresent “normal” radioactivity – in the sealed-off environment of the underground laboratory, however, it has now been possible to observe the process.

Calculating half-life time from light signals

The X-rays from the double electron capture produced an initial light signal as well as free electrons in the liquid xenon of the XENON1T detector. The electrons were moved toward the upper part of the detector where they generated a second light signal. From the direction and the time difference between the two signals, the researchers could determine the exact position of the double electron capture and the energy released during the decay. From the 126 processes observed in total over the last two years, the physicists calculated the enormously long half-life of 1.8 x 10 high 22 years for the atom Xenon-124. That is the slowest process ever measured directly.

“The new results show how well the XENON1T detector can detect very rare processes and reject background signals,” says Laura Baudis. While two neutrinos are emitted in the double electron capture process, scientists can now also search for the so-called neutrino-less double electron capture which could shed light on important questions regarding the nature of neutrinos.

Literature: E. Aprile et al. First observation of two-neutrino double electron capture in 124Xe with XENON1T. Nature. 24 April 2019. DOI: 10.1038/s41586-019-1124-4

The XENON1T experiment

With the XENON1T detector, physicists originally wanted to detect dark matter particles. Theoretical considerations predict that dark matter should very rarely “collide” with a xenon atom in the tank of the detector which is filled with liquid xenon. It thereby transfers energy to the atomic nucleus which subsequently excites other xenon atoms and causes them to emit light. These very faint signals of ultraviolet light and the minute amount of electrical charge which is released by the collision process are detected by means of sensitive light sensors. The detector was switched off for upgrading in 2018: The three times larger active detector mass along with further modifications will boost the new XENONnT detector’s sensitivity considerably.

The XENON1T detector is an international project involving around 160 researchers. In Switzerland the experiment receives funding from the SNSF and the University of Zurich. International support comes from Germany, the USA, Italy, Israel, Portugal, France, Sweden, the Netherlands and from the European Union.


Elemental old-timer makes the universe look like a toddler

Researchers observe rarest event in history of the universe



In terms of longevity, the universe has nothing on xenon 124.

Theory predicts the isotope’s radioactive decay has a half-life that surpasses the age of the universe “by many orders of magnitude,” but no evidence of the process has appeared until now.

An international team of physicists that includes three Rice University researchers – assistant professor Christopher Tunnell, visiting scientist Junji Naganoma and assistant research professor Petr Chaguine — have reported the first direct observation of two-neutrino double electron capture for xenon 124, the physical process by which it decays. Their paper appears this week in the journal¬†Nature.

While most xenon isotopes have half-lives of less than 12 days, a few are thought to be exceptionally long-lived, and essentially stable. Xenon 124 is one of those, though researchers have estimated its half-life at 160 trillion years as it decays into tellurium 124. The universe is presumed to be merely 13 to 14 billion years old.

The new finding puts the half-life of Xenon 124 closer to 18 sextillion years. (For the record, that’s 18,000,000,000,000,000,000,000.)

Half-life doesn’t mean it takes that long for each atom to decay. The number simply indicates how long, on average, it will take for the bulk of a radioactive material to reduce itself by half. Still, the chance of seeing such an incident for xenon 124 is vanishingly small – unless one gathers enough xenon atoms and puts them in the “most radio-pure place on Earth,” Tunnell said.

“A key point here is that we have so many atoms, so if any decays, we’ll see it,” he said. “We have a (literal) ton of material.”

That place, set deep inside a mountain in Italy, is a chamber that contains a ton of highly purified liquid xenon shielded in every possible way from radioactive interference.

Called the XENON1T experiment, it’s the latest in a series of chambers designed to find the first direct evidence of dark matter, the mysterious substance thought to account for most of the matter in the universe.

It has the ability to observe other unique natural phenomena as well. One such probe in the latest year-long run was to monitor for the predicted decay of xenon 124. Sorting through the pile of data produced by the chamber revealed “tens” of these decays, said Tunnell, who joined Rice this year as part of the university’s Data Science Initiative.

“We can see single neutrons, single photons, single electrons,” he said. “Everything that enters into this detector will deposit energy in some way, and it’s measurable.” XENON1T can detect photons that spring to life in the liquid medium as well as electrons drawn to a top layer of charged xenon gas. Both are produced when xenon 124 decays.

“There are different ways in which a radioactive isotope can decay,” he said. “One is beta decay. That means an electron comes out. You can have alpha decay, where it spits off part of the nucleus to release energy. And there’s electron capture, when an electron goes into the nucleus and turns a proton into a neutron. This changes the composition of the nucleus and results in its decay.

“Normally, you have one electron come in and one neutrino come out,” Tunnell said. “That neutrino has a fixed energy, which is how the nucleus expels its mass. This is a process we see often in nuclear particle physics, and it’s quite well understood. But we had never seen two electrons come into the nucleus at the same time and give off two neutrinos.”

The photons are released as electrons cascade to fill lower vacancies around the nucleus. They show up as a bump on a graph that can only be interpreted as multiple two-neutrino double electron captures. “It can’t be explained with any other background sources that we know of,” said Tunnell, who served as analysis coordinator for two years.

XENON1T remains the world’s largest, most sensitive detector for weakly interactive massive particles, aka WIMPs, the hypothetical particles believed to constitute dark matter. Tunnell worked at XENON1T with Rice colleague Naganoma, who served as operations manager.

The researchers who make up the XENON Collaboration, all of whom are co-authors on the paper, have yet to detect dark matter, but a larger instrument, XENONnT, is being built to further the search. Chaguine is the new instrument’s commissioning manager, responsible for its construction.

The collaboration’s example could lead researchers to find other exotic processes unrelated to dark matter, Tunnell said, including the ongoing hunt for another unseen process, neutrinoless double electron capture, in which no neutrinos are released. That process, according to the paper, “would have implications for the nature of the neutrino and give access to the absolute neutrino mass.”

“It gets tricky, because while we have the science we’re trying to do, we also have to think about what else we can do with the experiment,” he said. “We have a lot of students looking for thesis projects, so we make a list of 10 or 20 other measurements – but they’re a shot in the dark, and we almost always come up with nothing, as is typical of curiosity-driven science.

“In this case, we took a shot in the dark where two or three students were very lucky,” he said.

The material in this press release comes from the originating research organization. Content may be edited for style and length. Have a question? Let us know.


One email, each morning, with our latest posts. From medical research to space news. Environment to energy. Technology to physics.

Thank you for subscribing.

Something went wrong.

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.