Understanding how quantum gravity affects low-energy physics

Researchers have, for the first time, identified the sufficient and necessary conditions that the low-energy limit of quantum gravity theories must satisfy to preserve the main features of the Unruh effect.

In a new study, led by researchers from the International School for Advanced Studies (SISSA), the Complutense University of Madrid and the University of Waterloo, a solid theoretical framework is provided to discuss modifications to the Unruh effect caused by the microstructure of space-time.

The Unruh effect, named after the Canadian physicist who theorized it in 1976, is the prediction that someone who has propulsion and hence accelerates would observe photons and other particles in a seemingly empty space while another person who is inertial would see a vacuum in that same area.

The researchers analysed the mathematical structure of the correlations of a quantum field in frameworks beyond standard quantum field theory. This analysis was then used to identify the three necessary conditions that are sufficient to preserve the Unruh effect. These conditions can be used to determine the low-energy predictions of quantum gravity theories and the findings of this research provides the tools necessary to make these predictions in a broad spectrum of situations.

Having been able to determine how the Unruh effect is modified by alterations of the structure of quantum field theory, as well as the relative importance of these modifications, the researchers believe the study provides a solid theoretical framework to discuss and perhaps test this particular aspect as one of the possible phenomenological manifestations of quantum gravity. This is particularly important and appropriates even if the effect has not yet been measured experimentally, as it is expected to be verified in the not so distant future. (Image: Pixabay)

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Science in the Morning

From anti-aging news to reporting from deepest space. One email, daily.