New! Sign up for our email newsletter on Substack.

1 million billion billion billion billion billion billion: Number of undiscovered drugs

A new voyage into “chemical space” – occupied not by stars and planets but substances that could become useful in everyday life – has concluded that scientists have synthesized barely one tenth of 1 percent of the potential medicines that could be made. The report, in the journal ACS Chemical Neuroscience, estimates that the actual number of these so-called “small molecules” could be 1 novemdecillion (that’s 1 with 60 zeroes), 1 million billion billion billion billion billion billion, which is more than some estimates of the number of stars in the universe.

Jean-Louis Reymond and Mahendra Awale explain that small molecules, which are able to cross cell walls and interact with biological molecules in the body, are prime targets for scientists who develop new medicines. Most existing medications are small molecules. The authors focused on the “chemical space” inhabited by all of the small molecules that could possibly exist according to the laws of physics and chemistry. Researchers have identified millions of these compounds – the ACS’ Chemical Abstracts Service database contains almost 67 million substances. Reymond and Awale estimate that the molecules synthesized and tested as potential drugs so far represent less than 0.1 percent of chemical space. To aid researchers looking for new ways to prevent and treat disease, they set out to find the best ways to search for new small molecules.

The authors discuss several ways of getting a handle on chemical space, including by the size, shape and makeup of molecules. They show how computers can help researchers efficiently narrow a search for a new drug candidate. Computer modeling of chemical interactions can help researchers find a handful of promising molecules to synthesize and test in the lab. “Small molecule drugs are essential to the success of modern medicine,” the authors note, and suggest that their methods may be particularly useful for finding new pharmaceuticals that target the central nervous system.


Did this article help you?

If you found this piece useful, please consider supporting our work with a small, one-time or monthly donation. Your contribution enables us to continue bringing you accurate, thought-provoking science and medical news that you can trust. Independent reporting takes time, effort, and resources, and your support makes it possible for us to keep exploring the stories that matter to you. Together, we can ensure that important discoveries and developments reach the people who need them most.