Quantcast

Nanotechnology may help overcome current limitations of gene therapy

Scientists from Northwestern University and Argonne National Laboratory have created a hybrid “nanodevice” composed of a “scaffolding” of titanium oxide nanocrystals attached with snippets of DNA that may one day be used to target defective genes that play a role in cancer, neurological disease and other conditions.
The titanium oxide nanocrystals, which are less than a few billionths of a meter in diameter and are the same material used in artificial hips and knees, may provide the ideal means of overcoming current limitations of gene therapy, such as adverse reactions to genetically modified viruses used as vehicles to deliver genes into cells.

Aircraft technology helps diagnose artificial hip, knee problems

To assess the wear and tear on jet engine parts, mechanics used an old technology called ferrography to run the aircraft’s lubricating fluid through a magnetic device to separate out metal shavings and other ferrous engine debris. A University of Rhode Island researcher uses a similar process to assess the wear and tear on artificial hip and knee joints so patients can reduce the number of follow-up surgeries they must undergo or reduce the time spent in revision surgery.