Quantcast

Australian overturns 15 years of nano-science doctrine

An Australian mathematician has thrown 15 years of accepted scientific practice out the window by discovering a design flaw in a key component of the Atomic Force Microscope. His finding will force a rethink into the design and use of an instrument that has become a cornerstone of scientific measurement and analysis. Dr John Sader, at University of Melbourne’s Department of Mathematics and Statistics, and Particulate Fluids Processing Centre, used established mechanical principles to prove that the popular V-shaped cantilever inadvertently degrades the performance of the instrument, and delivers none of its intended benefits.

Vision researchers find that photon receptors pair up in neat rows

Using atomic-force microscopy, vision researchers have taken pictures of some of the eye’s photon receptors in their natural state, and have analyzed their packing arrangement. Their findings, published in the Jan. 9 issue of Nature, offer insight on how light signaling might be controlled in the retina’s outer edge. The retina receives light through rods and cones. Rods, which are most heavily concentrated on the retina’s outer edge, are sensitive to dim light and to movement, but not to color. Rods, like cones, face away from incoming light. Within rods, light causes a chemical reaction with rhodopsin. This begins a chain of stimulation along the visual pathway, which sends information to the brain for interpretation. The brain can detect one photon of light, the smallest unit of energy, when it is absorbed by a photoreceptor.