New Tool for Studying Animal Models of Neurological, Psychiatric Diseases

U.S. government scientists have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice. This “proof-of-principle” experiment “opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson’s and Alzheimer’s disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders,” said Panayotis (Peter) Thanos, lead author of the study.

New Technique Reveals Structure of Films With High Resolution

Scientists have developed and tested a new imaging technique that reveals the atomic structure of thin films with extremely high resolution. For the first time, the technique has shown very precisely how the atoms of the first layers of a film rearrange under the action of the substrate on which the film is grown. Thin films are currently used in technologies including electronic chips, coatings, and magnetic recording heads. To improve the properties of these materials and create even thinner structures ? such as smaller electronic chips ? scientists are now trying to understand how the films interact with the substrate on which they are grown.