Home Tags Brookhaven national laboratory

Tag: brookhaven national laboratory

New biological sensors for detecting blood glucose

Research conducted by scientists at the Hebrew University of Jerusalem and the U.S. Department of Energy's Brookhaven National Laboratory has paved the way for development of highly efficient sensors for measuring blood glucose in diabetic patients. Particles the size of a nanometer (that is, one billionth of a meter), which are the building blocks of the science of nanotechnology, have comparable dimensions to animal or plant proteins, thus enabling the integration of these components into hybrid systems exhibiting novel properties.

Gold 'Nanoplugs' Wire Up Enzymes

Researchers have devised a way to use gold nanoparticles as tiny electrical wires to plug enzymes into electrodes. The gold "nanoplugs" help align the molecules for optimal binding and provide a conductive pathway for the flow of electrons. The research, described in the March 21, 2003, issue of Science, may yield more sensitive, inexpensive, noninvasive detectors for measuring biological molecules, including, potentially, agents of bioterrorism.

Scientists Use Light to Determine Structure of Heterogeneous Surfaces

Scientists have refined a technique that uses very intense light to determine the structure of chemically heterogeneous surfaces with a submillimeter resolution. The description of the technique and its application to the study of varying densities of surface-bound molecules - each about one thousand times smaller than the diameter of a human hair - appears as the cover story of the January 13, 2003, issue of Applied Physics Letters. "Surfaces with gradually varying structures are being investigated by academia and industry for their potential uses in creating cleaner energy sources, designing chemical and biological sensors, and creating molecular patterns," said Jan Genzer, a chemical engineer at North Carolina State University in Raleigh and the lead author of the study. "By determining the chemical structure of surfaces covered with films as thin as a few billionths of a meter, scientists and engineers can improve their properties and performance."

Addicts’ Brains Work Harder to Control Behavior

A brain-imaging study conducted at the U.S. Department of Energy's Brookhaven National Laboratory reveals that recently abstinent methamphetamine abusers who reported they avoided harmful situations had higher resting metabolic rates in a part of the brain responsible for making decisions and modifying behaviors than those with low harm-avoidance scores. In non-addicted, comparison subjects, there was no significant association between harm avoidance and metabolism in this brain region. The findings, reported in the December 3, 2002, issue of NeuroReport, suggest that this higher-level brain center -- the orbitofrontal cortex -- is involved in drug addiction, and might be working extra hard in addicts trying to stay off drugs.

Scientists Reveal a New Way Viruses Cause Cells to Self-Destruct

Scientists have discovered that some viruses can use the most abundant protein in the cells they are infecting to destroy the cells and allow new viruses to escape to infect others. The findings build on earlier research on how virus particles become infectious and may lead to the design of more effective antiviral remedies.

New Tool for Studying Animal Models of Neurological, Psychiatric Diseases

U.S. government scientists have demonstrated that a miniature positron emission tomography (PET) scanner, known as microPET, and the chemical markers used in traditional PET scanning are sensitive enough to pick up subtle differences in neurochemistry between known genetic variants of mice. This "proof-of-principle" experiment "opens up a whole new, non-invasive way to study and follow transgenic or genetically engineered strains of mice that serve as animal models for human neurological diseases, such as Parkinson's and Alzheimer's disease or psychiatric diseases such as substance abuse, depression, and anxiety disorders," said Panayotis (Peter) Thanos, lead author of the study.

New Technique Reveals Structure of Films With High Resolution

Scientists have developed and tested a new imaging technique that reveals the atomic structure of thin films with extremely high resolution. For the first time, the technique has shown very precisely how the atoms of the first layers of a film rearrange under the action of the substrate on which the film is grown. Thin films are currently used in technologies including electronic chips, coatings, and magnetic recording heads. To improve the properties of these materials and create even thinner structures ? such as smaller electronic chips ? scientists are now trying to understand how the films interact with the substrate on which they are grown.

Get more stuff like this
in your inbox

From anti-aging to the search for alien life, we promise to never bore.