Quantcast

Aerobic exercise relieves insomnia

CHICAGO — The millions of middle-aged and older adults who suffer from insomnia have a new drug-free prescription for a more restful night’s sleep. Regular aerobic exercise improves the quality of sleep, mood and vitality, according to a small but…

Nanotechnology may help overcome current limitations of gene therapy

Scientists from Northwestern University and Argonne National Laboratory have created a hybrid “nanodevice” composed of a “scaffolding” of titanium oxide nanocrystals attached with snippets of DNA that may one day be used to target defective genes that play a role in cancer, neurological disease and other conditions.
The titanium oxide nanocrystals, which are less than a few billionths of a meter in diameter and are the same material used in artificial hips and knees, may provide the ideal means of overcoming current limitations of gene therapy, such as adverse reactions to genetically modified viruses used as vehicles to deliver genes into cells.

Controlling Neurons May Ease Parkinson's Disease

Blocking or eliminating a specific potassium channel in a small group of brain cells may improve or prevent the symptoms of Parkinson’s disease, a debilitating and progressive neurodegenerative disease that afflicts over 1 million people in the United States. In Parkinson’s disease, neurons that release dopamine die. The loss of dopamine causes an array of debilitating symptoms that include resting tremor, muscle rigidity and slowed movement. Although the cause of the disease remains uncertain, James Surmeier and colleagues at Northwestern University have discovered a way of potentially lessening the symptoms and progression of the disease. The investigators describe their findings in the March issue of Nature Neuroscience.<

Controlling 'badly' behaving neurons may ease Parkinson's disease

Blocking or eliminating a specific potassium channel in a small group of brain cells may improve or prevent the symptoms of Parkinson’s disease, a debilitating and progressive neurodegenerative disease that afflicts over 1 million people in the United States. In Parkinson’s disease, neurons that release dopamine die. The loss of dopamine causes an array of debilitating symptoms that include resting tremor, muscle rigidity and slowed movement.

Digital X-ray microtomography yields stunning views of limb regeneration

Employing high-tech, digital X-ray microtomography (microCT), Northwestern University scientists have discovered the way in which newts form new bone and cartilage during limb regeneration. Newts are a type of salamander, the only vertebrates capable of rebuilding lost structures such as limbs throughout their lifetimes. Reporting in the January issue of Developmental Dynamics, Northwestern researchers Hans-Georg Simon and Stuart Stock showed that bone formation in a regenerated forelimb combines elements of embryonic development and of adult wound healing.