Quantcast

Inner ear of chicken yields clues to human deafness and balance disorders

Scientists at Washington University School of Medicine in St. Louis have gained new insights into the causes of human deafness and balance disorders by studying the inner ear of chickens. The research provides new clues as to why birds can replace critical cells in the inner ear and humans cannot. Loss of these so-called sensory hair cells in humans is a leading cause of deafness and impaired balance due to aging, infectious disease and exposure to loud noise. The study will be published in the June 1 issue of the journal Human Molecular Genetics and appears online today.

Researchers discover gene that contributes to sense of balance

Researchers have discovered a gene that appears to be critical for maintaining a healthy sense of balance in mice. The study, led by a team at Washington University School of Medicine in St. Louis, appears in the April 1 issue of the journal Human Molecular Genetics and online March 24. “Loss of balance is a significant problem in the elderly because it can lead to dangerous falls and injuries,” says one of the study’s principal investigators, David M. Ornitz, M.D., Ph.D., professor of molecular biology and pharmacology at the School of Medicine. “Loss of balance also is a problem for astronauts following exposure to zero gravity. Now that we’ve discovered this new gene, we can begin to understand the mechanisms that allow the body to sense gravity and maintain balance.”

Protein Linked to Movement Disorders

Using a tiny worm to model a severe childhood movement disorder, researchers have discovered the role of a protein that may have implications for a number of neurological syndromes such as Parkinson’s and Huntington’s diseases. The scientists found that a mutated gene associated with early onset dystonia, a severe hereditary movement disorder, normally helps manage protein folding.