Quantcast

New techniques reveal workings of bacteria linked to cystic fibrosis

Researchers have identified a cell signaling system that may help the bacterium Pseudomonas aeruginosa establish itself in the lungs of cystic fibrosis patients. The researchers used a new technology to seek insights into an important and elusive enemy, and say the findings are important for biology and potentially important for therapy. The researchers identified the activation of this signaling system by the use of new quantitative proteomic technology that analyzed Pseudomonas samples from the lungs of children with cystic fibrosis. Proteomics is the method for analyzing and cataloguing a complete cellular complement of proteins, which are produced based on information encoded by genes and are the workhorses of all living cells.

Separated Before Birth: Molecular Signals Part Fetal Blood and Lymphatic Vessels

At some point in fetal development, cells from the newly emerged blood circulatory system start out on their own and form a separate parallel network of vessels known as the lymphatic system. In the January 10th issue of Science, researchers report the discovery of the molecular signals necessary to separate the lymph vessel network from the blood vessel network. Their findings clarify an important juncture in fetal development, shed light on the mechanisms by which molecular signals influence vascular development, pave the way for potential therapeutics, and may ultimately clear up a minor mystery among researchers that has been brewing since the mid-1990s.