Quantcast

A bed of microneedles: Scientists’ gadget measures muscle cell force

Using the same technology that creates tiny, precisely organized computer chips, a research team has developed beds of thousands of independently moveable silicone “microneedles” to reveal the force exerted by smooth muscle cells. Each needle tip in the gadget, whose development and testing is reported this week in the advance online edition of the Proceedings of the National Academy of Sciences, can be painted with proteins cells tend to grab onto. By measuring how far a contracting muscle cell moves each needle, the scientists can calculate the force generated by the cell.

Scientists Grow Nano Blood Vessels

Traditional heart bypass surgeries require using veins from the leg to replace damaged blood vessels. Using a nanotechnology developed by Virginia Commonwealth University researchers, doctors soon could be using artificial blood vessels grown in a laboratory to help save half a million lives every year. The new technology produces a natural human blood vessel grown around a scaffold, or tube, made of collagen. Using a process called electrospinning, VCU scientists are making tubes as small as one millimeter in diameter. That’s more than four times smaller than the width of a drinking straw and six times smaller than the smallest commercially available vascular graft.