Quantcast

Researchers Discover How to Make Ultra-Dense Nanowire Lattices

Researchers have invented a new technique for producing “Ultra High Density Nanowire Lattices and Circuits.” The method, for which a patent is pending, is akin to intaglio printmaking processes in which printing is done from ink below the surface of the plate. Intaglio processes emboss paper into the plate’s incised lines. The CNSI nanowires are like the embossed ink on a paper substrate, except that the nanowires are much, much smaller than ink lines. Take, for instance, a grid of crossed nanowires. Each cross represents the element of a simple circuit. The nanowire junction density reported in the “Science Express” article is in excess of 1011 per square centimeter.

'Sticky' DNA crystals promise new way to process information

Imagine information stored on something only a hundredth the size of the next generation computer chip–and made from nature’s own storage molecule, DNA. A team led by Richard Kiehl, a professor of electrical engineering at the University of Minnesota, has used the selective “stickiness” of DNA to construct a scaffolding for closely spaced nanoparticles that could exchange information on a scale of only 10 angstroms (an angstrom is one 10-billionth of a meter). The technique allows the assembly of components on a much smaller scale and with much greater precision than is possible with current manufacturing methods, Kiehl said. The work is published in a recent issue of the Journal of Nanoparticle Research.

Smart heat pipe efficiently cools laptops, permitting greater speed

Evacuating heat is one of the great problems facing engineers as they design faster laptops by downsizing circuit sizes and stacking chips one above the other. The heat from more circuits and chips increase the likelihood of circuit failures as well as overly heated laps. “Space, military, and consumer applications, are all bumping up against a thermal barrier,” says Sandia researcher Mike Rightley, whose newly patented “smart” heat pipe seems to solve the problem. The simple, self-powered mechanism transfers heat to the side edge of the computer, where air fins or a tiny fan can dissipate the unwanted energy into air.