Quantcast

Researchers Say Deadly Twist Key To Sickle Cell Disease

Patients with sickle cell disease have mutant haemoglobin proteins that form deadly long, stiff fibres inside red blood cells. A research team led by University of Warwick researcher Dr Matthew Turner, propose a mathematical model in the 28 March online issue of PRL to explain the persistent stability of these deadly fibres. The theory suggests that an inherent “twistiness” in the strands that make up the fibres could be the key to their durability and possibly to new treatments.

Artificial worlds used to unlock secrets of real human interaction

What do flocks of birds, traffic jams, fads, drinking games, forest fires and residential segregation have in common? The answer could come from a new computational research method called agent-based modeling. Michael Macy, a sociologist at Cornell University, Ithaca, N.Y., is using this powerful new tool to look for elementary principles of self-organization that might shed new light on long-standing puzzles about how humans interact. A professor and chair of Cornell’s Department of Sociology, Macy will speak Feb. 14 at the annual meeting of the American Association for the Advancement of Science in Denver in a symposium, “Artificial Agent Societies: A Computational Future for the Social Sciences.”