Exploring the unknown frontier of the brain

To a large degree, your brain is what makes you… you. It controls your thinking, problem solving and voluntary behaviors. At the same time, your brain helps regulate critical aspects of your physiology, such as your heart rate and breathing.

And yet your brain–a nonstop multitasking marvel–runs on only about 20 watts of energy, the same wattage as an energy-saving light bulb.

Still, for the most part, the brain remains an unknown frontier. Neuroscientists don’t yet fully understand how information is processed by the brain of a worm that has several hundred neurons, let alone by the brain of a human that has 80 billion to 100 billion neurons. The chain of events in the brain that generates a thought, behavior or physiological response remains mysterious.

Why the big mystery? The brain is the most complex known biological structure in the universe. When researchers do figure out how it works, they will accomplish perhaps the greatest scientific achievement in recorded human history.

The search for a theory

Neuroscientists all over the world are working to develop an overarching theory of how a healthy brain works. Similar to the way the Big Bang theory offers one possible explanation for the cosmos and helps guide research on the origins of the universe, a theory of healthy brain function would offer a possible explanation of how the brain and the entire nervous system work and would help guide neuroscience research.

A theory of healthy brain function may also help to explain how injuries and diseases disrupt brain function and thereby help researchers identify new directions for research on traumatic brain injuries and brain diseases.

More knowledge about healthy brain function may also help inspire the development of smart technologies that mimic some of the human brain’s unparalleled capabilities. If supercomputers–which can each annually consume millions of dollars’ worth of electricity as well as huge amounts of cooling water–could match the brain’s energy efficiency and processing power, their massive energy consumption would plummet, and science and innovation would leap forward.

Neuroscientists have made some progress toward understanding the brain. They have identified brain regions that regulate particular functions, including speech and motor function, and they can recognize structural and functional changes that occur in the brain throughout an animal’s life span.

More recently, neuroscientists have developed game-changing tools for visualizing and analyzing parts of the brain in unprecedented detail. These tools provide the first detailed glimpses of the brain and are thrusting neuroscience forward, much as the first powerful telescopes provided the deep glimpses into the universe and thrust astronomy forward many years ago.

BRAIN Power

Building on these and other recent innovations, President Barack Obama launched the Brain Research through Advancing Innovative Neurotechnologies Initiative (BRAIN Initiative) in April 2013. Federally funded in 2015 at $200 million, the initiative is a public-private research effort to revolutionize researchers’ understanding of the brain.

A co-leader of the initiative, the National Science Foundation (NSF) is working to revealhow a healthy brain works. Magnetic resonance imaging (MRI) technology, bionic limbs and laser eye surgery were all grounded in early NSF-funded fundamental research, and fundamental research on the healthy brain may lead to equally profound advances.

NSF will spend about $48.48 million on awards in 2015 supporting the BRAIN Initiative, part of approximately $106.44 million in awards we will provide for all “Understanding the Brain” research across a range of neuroscience and cognitive science topics. With that support, our research teams are tackling the mysteries of the brain from varied angles.

For example, NSF is funding collaborations among:

  • Computer scientists, cyberinfrastructure experts and biologists to create a cyberinfrastructure to store and manage the huge volumes of data–“Big Data”–generated by brain studies. (For some perspective, consider that if nanoscale images of one human brain were stored in a stack of 1 terabyte hard drives, the stack would reach to the moon, or beyond!)
  • Engineers, materials experts and physicists to develop new materials needed to invent new probes for monitoring and manipulating the brain.
  • Physicists, mathematicians and computer scientists to build models that can help reveal and predict the complex neural activities that drive thoughts and behavior.
  • Social and behavioral scientists and physicists to improve the resolution of functional magnetic resonance imaging of the brain to help explain how social and physical environments alter the brain.
  • Biologists, physicists, chemists and engineers to study the nervous systems of many species, from simple organisms to complex vertebrates.

In addition, NSF awarded $10.8 million in Early Concept Grants for Exploratory Research(EAGERs) to 36 teams–most of which are collaborative and multidisciplinary in nature–to support the development of new technologies that will help answer a critical question: How do circuits of neurons generate behaviors and enable learning and perception?

An EAGER team from the University of North Carolina School of Medicine is improving a new kind of microscope to simultaneously view individual neurons firing in two or more different regions of a brain at the same time. This microscope will enable researchers to see in detail, for the first time, how different areas of the brain team up to process information.

Taking an entirely different tack, researchers at the new $25 million NSF-funded Center for Brains, Minds & Machines at MIT are investigating human intelligence and the potential for creating intelligent machines. As researchers learn how to build those machines, they will likely also advance humanity’s understanding of human intelligence.

Big innovations from basic research

If history is any guide, these and other fundamental brain-research projects will have important applications. For example, researchers around the world are currently studying diseases such as post-traumatic stress disorder, Parkinson’s disease and schizophrenia with a powerful new tool called optogenetics.

Optogenetics, which was developed with partial funding from NSF, enables researchers to selectively turn on and off individual neurons in living animals by exposing them to light. The development of optogenetics was made possible, in part, by earlier NSF-funded research on light sensitivity in algae that was conducted purely out of curiosity about the survival strategies of algae and without any knowledge that it would eventually be pivotal to the seemingly far-flung field of brain research. (Optogenetics is explained in a short video, Biodiversity: A Boon for brain research.)

Viewers of the 2014 World Cup saw another important application of fundamental brain research: The first kick of the games was performed by a person with paraplegia wearing an exoskeleton. The development of this exoskeleton built upon NSF-funded research on how neurons are involved in motor learning–research that began nearly twenty years ago.

Across government and across the nation, hopes are high that additional, fundamental neuroscience research will lay the groundwork for continued advances that will help society take additional strides forward.


Substack subscription form sign up

9 thoughts on “Exploring the unknown frontier of the brain”

  1. Understanding what makes us tick as humans will enable more guided research so we will have direction and hopefully get a breakthrough.

  2. I think the fact that we can’t fully access our full brain capacity also provides a restriction to understanding the brain. There’s many mysteries around what we humans could do if we had full access to our brains.

  3. At one point in time, people believed that the brain developed into its full form by the age of three, and that what developed afterwards was just a matter of enhancement. But now we know that the brain changes with experience and development. Maybe there are better ways for us to “enhance” our brains.

  4. Is it really possible to target a specific area of the brain and teach just this part since the brain is so connected. Neurons in the brain learn, remember and forget, can these functions realistically be isolated. Skills need to be broken down into their component parts and these parts can be taught. But it is evident that we do not totally understand and know how this learning occurs nor do we know exactly where in the brain that learning is stored.

  5. In order for us, as humans, to develop and grow further, so must our knowledge and understanding of “what makes us tick” be learned. Such initiatives and research are our hope of a brighter future. Giving us the knowledge, gives us the power to be even more than what we think. Neuroscientists will however, have to do countless and careful amounts of research that could cost governments millions. But the possibilities and opportunities would be endless since we know so little about the full potential of our brains. How much do we not know about what we don’t know?

  6. Exciting read, I am fascinated by how the brain works, it makes one wonder how clever a human being can be if he or she can use the brain to its full potential. Understanding how the brain works will be in my opinion the greatest achievement scientists will ever achieve as it will unlock many doors and new possibilities.

  7. I’m thrilled to read about the Brain Initiative project and the new discoveries. Nothing will satisfy a mind that hunger for knowledge . We are constantly trying to create and improve . We define purposes and reasons but it is so much more than a few chemical processes and electrical impulses. We must have the nerves to fight against our critical selves or never will dreams be reality.

Comments are closed.