A team of researchers, led by Serge Przedborski, at Columbia University in New York, have demonstrated that infusion of D-beta-hydroxybutyrate (D-beta-HB) to mice suffering from Parkinson disease restored impaired brain function and protected against neurodegeneration and motor skill abnormalities. D-beta-HB, already utilized in the treatment of epilepsy, may represent a cheap and easy way to treat Parkinson disease. Parkinson disease is the second most common neurodegenerative disorder after Alzheimer disease. Sufferers experience motor skill abnormalities including tremor, muscle stiffness, and unstable voluntary movements and posture. The main pathological feature of the Parkinson brain is the loss of dopaminergic neurons.
From Journal of Clinical Investigation :
A cheap and easy way to treat Parkinson disease
A team of researchers, led by Serge Przedborski, at Columbia University in New York, have demonstrated that infusion of D-beta-hydroxybutyrate (D-beta-HB) to mice suffering from Parkinson disease restored impaired brain function and protected against neurodegeneration and motor skill abnormalities. D-beta-HB, already utilized in the treatment of epilepsy, may represent a cheap and easy way to treat Parkinson disease.
Parkinson disease is the second most common neurodegenerative disorder after Alzheimer disease. Sufferers experience motor skill abnormalities including tremor, muscle stiffness, and unstable voluntary movements and posture. The main pathological feature of the Parkinson brain is the loss of dopaminergic neurons.
Reported in an article in the September 15 issue of the Journal of Clinical Investigation, Przedborski and colleagues administered the neurotoxin MPTP to mice, which caused dopaminergic neurodegeneration and deficits in the mitochondrial electron transport chain reminiscent of Parkinson disease. Using this model of disease, the authors showed that the infusion of the ketone body D-beta-HB restored mitochondrial respiration and protected against MPTP-induced neurodegeneration and motor deficits. The study supports a critical role for mitochondrial defect in Parkinson disease.
Ketone bodies are already successfully used in the treatment of epilepsy. They are also able to penetrate the blood-brain barrier that often prevents potentially beneficial drugs from entering the brain.
D-beta-HB may therefore be considered as a novel form of neuroprotective therapy in the treatment of Parksinson disease.