New System Speeds the Mapping of Blood Vessel Networks in Live Tumors

Researchers have developed an automated system that can swiftly map capillaries in a live tumor. What used to take days of manually tracing the vessels, now takes two minutes. The diagnostic tool, in use at Harvard Medical School and at Northeastern University, is a boon to oncologists who aim to understand how blood vessels form in tumors.From the Harvard Medical School:Branching Out: New System Created by Rensselaer Researchers Speeds the Mapping of Blood Vessel Networks in Live Tumors

TROY, N.Y.- Rensselaer researchers have developed an automated system, called RPI-Trace3D, that can swiftly map capillaries in a live tumor. What used to take days of manually tracing the vessels, now takes two minutes. The diagnostic tool, in use at Harvard Medical School and at Northeastern University, is a boon to oncologists who aim to understand how blood vessels form in tumors.

For the first time, medical scientists can quickly and precisely measure blood vessel properties to quantify the effects of various agents, such as new drugs, on capillary growth. Preventing new capillaries from forming in abnormal tissue by shutting off a tumor’s blood supply (angiogenesis) is a promising approach to fighting cancer.

The patent-pending RPI-Trace3D system was developed by a team led by Badri Roysam, director of the Center for Subsurface Sensing and Imaging Systems (CenSISS) at Rensselaer.

Sophisticated microscopes connected to computers can now generate complex 3-D images to allow scientists to peer deeper inside live tumors. Until recently, such intricate images took days to quantify because scientists had to manually trace the vessels. Typically, the results were less than perfect. The RPI-Trace3D system incorporated into the electronic microscopes identifies and traces all the capillaries of a living tumor in less than two minutes.

The system will significantly improve the search for better cancer-fighting drugs, says Harvard Medical School’s Edward Brown, a researcher in the school’s Department of Radiation Oncology. Brown is using the mapping system in collaboration with Northeastern University and other schools.

“The Rensselaer research team has generated truly impressive algorithms that trace out all the vessels in a 3-D network, as well as identify a number of properties of the vessels. This allows us to quantify these vessels accurately for the first time,” Brown says.

Rensselaer graduate student Muhammad-Amri Abdul-Karim and Rensselaer graduate Khalid Al-Kofahi are key members of the Rensselaer team.

“We are the only cancer research team in the world that uses a rapid, fully automated,
tracing algorithm to quickly obtain measurements from 3-D blood vessel images,” Abdul-Karim says.

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.


Substack subscription form sign up