A common practice millions of Americans partake in to stay healthy is actually doing much more harm than good and may be contributing to the spread of drug-resistant disease.
The solution: Don’t buy a product simply because it says it’s “antimicrobial.”
Products made using triclosan — a common antibiotic found in everything from hand soap to cleaning wipes to toys — are among microbiologist Marvin Whiteley‘s biggest pet peeves.
“The problem with that antibiotic is that it’s really not that active against a lot of the bugs you’d hope it would be,” says Whiteley, a professor of molecular biosciences. But it’s not triclosan’s ineffectiveness that bugs Whiteley. It’s that it weakens other antibiotics.
“Bacteria that are susceptible to triclosan become resistant to it, but they also become resistant to antibiotics you might get at the doctor’s office. So you’re proliferating antibiotic resistance,” he warns. “We’re putting millions of pounds of this stuff into the environment.”
Understanding what makes bacteria resistant is just one facet of the work being done on infectious disease at UT. Whiteley and the students in his lab study complex and opportunistic infections that have more than one bacterium.
“In the mid-1900s we were worried about ‘professional pathogens’ that just made people sick” with conditions like measles or whooping cough — diseases now preventable thanks to vaccines. “Vaccines are one of the biggest feats that increased life expectancy,” Whiteley says.
(Related: Read about College of Pharmacy’s Maria Croyle‘s groundbreaking work on a vaccine for ebola.)
But as certain infections become nastily persistent — and often, resistant to available treatments — physicians have fewer options. That’s where Whiteley’s research comes in. His lab looks at how bacteria previously thought to not be important in disease can make an infection worse or harder to treat.
“Other bacteria present in an infection can influence how pathogenic the infection is,” Whiteley says. Doctors may not be looking at the whole stew of bacteria when they make a diagnosis and “may assume the other bacteria are innocuous, but they’re not. We try to understand how the secondary bacteria are influencing the primary infection.”
This work includes bacteria in the mouth (“Periodontitis is one of the most prevalent bacterial diseases in the world,” Whiteley says), chronic wounds (“Seven to 10 percent of the U.S. health care budget is spent on treating wounds,” he says, such as bedsores or diabetic injuries), and burn wounds, which have a high mortality rate.
Understanding infectious disease is nearly as complex as the infections themselves.
“The questions we’re talking about are rooted in ecology, evolution, things way outside of my own discipline,” Whiteley says. “You might need an evolutionary biologist, an ecologist, a physicist, a chemist, a biologist and always engineers who are thinking more practically about problems.”
That need for a team of experts working together was one of the driving forces behind the creation of UT’s new Center for Infectious Disease, a research unit that spans three colleges (Natural Sciences, Engineering and Pharmacy). Whiteley is the founding director.
“One of the great things about UT is that it’s big,” says Whiteley. “That’s also a problem. The center will get people together with an interest in infectious disease, regardless of department. You can’t have 30 people working independently of one another; you have to have a common goal.”
The center is poised to take advantage of the establishment of Dell Medical School, which will give researchers the opportunity to see their lab work tested in clinical settings.
“There’s not one thing UT infectious disease researchers could have asked for better than having a medical school,” Whiteley says, “because that was the thing we lacked: that direct translational, clinical application of what we do.”
Other researchers in the center include Stephen Trent, George Georgiou, Robert Krug, Sara Sawyer, Jason Shear and Christopher Sullivan. (See the sidebar on the right for more information about their work.)
In the meantime, Whiteley advises, stay away from triclosan. “I’m not sure wiping the handle on your HEB cart is going to save your life.”
We must always be careful of what we eat and also what activities we do with our bodies because they always have an after effect to our bodies. Scientists are trying by all means to come up with a solution to fight diseases but even though we also must try to fight these diseases by keeping ourselves healthy. Antibiotics doesn’t always help the antibodies to be resistant to a bacteria, so scientists are trying to find another way to prevent these bacteria.