Researchers find human body produces ozone

In what is a first for biology, a team of investigators is reporting that the human body makes ozone. The team has been slowly gathering evidence over the last few years that the human body produces the reactive gas — most famous as the ultraviolet ray-absorbing component of the ozone layer — as part of a mechanism to protect it from bacteria and fungi. “Ozone was a big surprise,” says researcher Bernard Babior. “But it seems that biological systems manufacture ozone, and that ozone has an effect on those biological systems.”

Researchers discover genetic pathway in lupus

Researchers have identified a genetic “signature,” a series of genes that are activated by interferon in patients with severe systemic lupus erythematosus (SLE). This is the first time a signature pattern of gene expression has been identified in an autoimmune disease. The identification of this genetic signature may be used in the future to help diagnose lupus, predict the development of serious disease, and perhaps most importantly in treatment decisions.

Growing Human Antibodies in Algae is Inexpensive, Fast

A group of scientists at The Scripps Research Institute have used algae to express an antibody that targets herpes virus, describing the work in an upcoming issue of the journal Proceedings of the National Academy of Sciences. This antibody could potentially be an ingredient in an anti-herpes topical cream or other anti- herpes treatments, but more importantly the algae expression technology that the TSRI team used could facilitate production of any number of human antibodies and other proteins on a massive scale.

Team uses genomic tools to discover gene for childhood genetic disorder

In an advance illustrating the power of genomic information, an international team of researchers today announced it has identified a gene that causes Leigh Syndrome, French Canadian type (LSFC), a fatal inherited disorder affecting 1 in 2000 live births each year in the Saguenay-Lac St Jean region of Quebec. The paper appears in the January 14 issue of the journal Proceedings of the National Academy of Sciences. The findings will have immediate clinical implications for families in the Saguenay-Lac St-Jean region in the Quebec province in Canada, where the disorder is common and is associated with high infant and childhood mortality.

Blasting antibodies with lasers measures their flexibility

A group of scientists have used a powerful laser in combination with innovative quantum mechanical computations to measure the flexibility of mouse antibodies. The new technique, described in an upcoming issue of the journal Proceedings of the National Academy of Sciences, is significant because protein flexibility is believed to play an important role in antibody — antigen recognition, one of the fundamental events in the human immune system. “This is the first time anybody has ever gone into a protein and experimentally measured the frequency of vibrations in response to an applied force,” said Floyd Romesberg, assistant professor in the Department of Chemistry at The Scripps Research Institute, who led the study.