Reflected glory

Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow — its dust particles simply reflect the starlight that falls on them. D…

A swarm of ancient stars

The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concent…

A nearby galactic exemplar

Originally discovered from Australia by the Scottish astronomer James Dunlop early in the nineteenth century, NGC 300 is one of the closest and most prominent spiral galaxies in the southern skies and is bright enough to be seen easily in bino…

Distant world in peril discovered

When, in a distant future, the Sun begins to expand and evolves into a “giant” star, the surface temperature on the Earth will rise dramatically and our home planet will eventually be incinerated by that central body. Fortunately for us, this dramatic event is several billion years away. However, that sad fate will befall another planet, just discovered in orbit about the giant star HD 47536, already within a few tens of millions of years. At a distance of nearly 400 light-years from us, it is the second-remotest planetary system discovered to date.

Discovery of nearest known brown dwarf

A team of European astronomers has discovered a Brown Dwarf object (a ‘failed’ star) less than 12 light-years from the Sun. It is the nearest yet known. Now designated Epsilon Indi B, it is a companion to a well-known bright star in the southern sky, Epsilon Indi, previously thought to be single. The binary system is one of the twenty nearest stellar systems to the Sun. The brown dwarf was discovered from the comparatively rapid motion across the sky which it shares with its brighter companion : the pair move a full lunar diameter in less than 400 years. It was first identified using digitised archival photographic plates from the SuperCOSMOS Sky Surveys and confirmed using data from the Two Micron All Sky Survey. Follow-up observations with the near-infrared sensitive SOFI instrument on the ESO 3.5-m New Technology Telescope (NTT) at the La Silla Observatory confirmed its nature and has allowed measurements of its physical properties.