Silent DNA architecture helps block cancer cell growth

Cancerous and precancerous cells can detect that they are abnormal and kill themselves, or remain alive indefinitely but cease proliferating, through two intrinsic processes called programmed cell death and cellular senescence. One goal of cancer chemotherapy is to help stimulate these potent antitumor processes. Researchers at Cold Spring Harbor Laboratory on Long Island have recently shown that by locking cancer cells into a permanent state in which they remain alive but can no longer proliferate, cellular senescence contributes to successful outcomes following cancer therapy. Now, the same group has uncovered a precise molecular mechanism that helps trigger the “stop growing” response of cells. The study is published in the June 13 issue of the journal Cell.

Researchers discover new breast, lung cancer gene

Scientists at Tularik Inc. and Cold Spring Harbor Laboratory have discovered a new gene that is expressed at abnormally high levels in nearly 50% of the breast cancer specimens they examined, and is similarly overexpressed in a large proportion of lung cancers (35%).

Pavlov?s Flies: Researchers Identify Fruit Fly Memory Mutants

By teaching fruit flies to avoid an odor and isolating mutant flies that can?t remember their lessons, researchers at Cold Spring Harbor Laboratory in New York have identified dozens of genes required for long-term memory. In the same study, using DNA chip technology, the scientists identified another large group of candidate memory genes that are either switched on or off in the fly brain during memory formation.

Researchers achieve germline transmission of ‘gene knockdown’ in mice

RNA interference (RNAi) has emerged as an extremely versatile and powerful tool in biomedical research. A new study published in the February issue of Nature Structural Biology reports the creation of transgenic mice in which inherited RNAi lowers or silences the expression of a target gene, producing a stable “gene knockdown.” This finding extends the power of RNAi to genetic studies in live animals, and has far-reaching implications for the study and treatment of many human diseases.

Designer molecules correct RNA splicing defects

With a high-tech fix for faulty cellular editing, scientists at Cold Spring Harbor Laboratory have moved a step closer to developing treatments for a host of diseases as diverse as breast cancer, muscular dystrophy, and cystic fibrosis. Many human diseases have been linked to defects in a cellular editing process called pre-messenger RNA splicing. Adrian Krainer, a molecular biologist at Cold Spring Harbor Laboratory, has spent years investigating this complex editing process, which takes the information coded in genes and makes it available for building proteins. In a new study published in the journal Nature Structural Biology, Krainer’s team has devised a clever way to correct RNA splicing defects implicated in breast cancer and spinal muscular atrophy (a neurodegenerative disease). In principle, the technique could provide the ability to correct RNA splicing defects associated with any gene or disease.