NASA hopes to improve computers with tiny carbon tubes on silicon

The life of the silicon chip industry may last 10 or more years longer, thanks to a new manufacturing process developed by NASA scientists. The novel method, announced in the April 14 issue of the journal Applied Physics Letters, includes use of extremely tiny carbon ‘nanotubes’ instead of copper conductors to interconnect parts within integrated circuits (ICs). Carbon nanotubes are measured in nanometers, much smaller than today’s components. A nanometer is roughly 10,000 times smaller than the width of an average human hair. ICs are very small groups of electronic components made on silicon wafers.

Science begins for LIGO in quest to detect gravitational waves

Armed with one of the most advanced scientific instruments of all time, physicists are now watching the universe intently for the first evidence of gravitational waves. First predicted by Albert Einstein in 1916 as a consequence of the general theory of relativity, gravitational waves have never been detected directly. In Einstein’s theory, alterations in the shape of concentrations of mass (or energy) have the effect of warping space-time, thereby causing distortions that propagate through the universe at the speed of light. A new generation of detectors, led by the Laser Interferometer Gravitational-Wave Observatory (LIGO), is coming into operation and promises sensitivities that will be capable of detecting a variety of catastrophic events, such as the gravitational collapse of stars or the coalescence of compact binary systems.

Giant Cosmic Lens Reveals Secrets of Distant Galaxy

Using the National Science Foundation’s Very Large Array (VLA) radio telescope and helped by a gigantic cosmic lens conveniently provided by nature, an international team of astronomers has discovered that a young galaxy had a central disk of gas in which hundreds of new stars were being born every year — at a time when the Universe was only a fraction of its current age.

It's a nova … it's a supernova … it's a HYPERNOVA

Two billion years ago, in a far-away galaxy, a giant star exploded, releasing almost unbelievable amounts of energy as it collapsed to a black hole. The light from that explosion finally reached Earth at 6:37 a.m. EST on March 29, igniting a frenzy of activity among astronomers worldwide. This phenomenon has been called a hypernova, playing on the name of the supernova events that mark the violent end of massive stars.

NASA funds $173 million auroral satellite mission

NASA has awarded the University of California, Berkeley, a $173 million contract to build and operate a fleet of five satellites to pinpoint the event in Earth’s magnetic neighborhood that triggers violent but colorful eruptions in the Northern and Southern lights. The aurora borealis and aurora australis are shimmering light shows that brighten the polar nights, generated by showers of electrons descending along magnetic field lines onto the poles. These high-speed electrons spark colored lights as they hit the atmosphere, much like a color TV lights up when an electron beam hits the phosphorescent screen.

40,000 lbs of Space Shuttle debris collected so far

The Columbia Accident Investigation Board (CAIB) continues their work into the investigation of the accident and a number of hearings are now being held in public. The chairman of the NASA Columbia Task Force (the body that supports the CAIB) gave a detailed briefing a few days ago to ESA and the other International Partners on the status to date. Over 40,000 lbs of debris have been recovered, representing 20% of the total Shuttle mass. However, nothing has yet been recovered west of Texas despite the fact that there is filmed evidence that debris had fallen over California. The search for debris in this area still continues.
The Orbiter Experiments Recorder is the latest piece of important equipment to be found. This is a magnetic tape recorder that records data from various sensors during ascent and re-entry, which had not been tele-metered down to the ground. The recorder is currently at the Kennedy Space Centre and undergoing analyses.

New South Pole Seismic Station One of World's Quietest, Most Sensitive

Data collected by a new seismic observatory at the National Science Foundation’s Amundsen-Scott South Pole Station indicate that it is the quietest listening post on the planet for observing shudders produced by earthquakes around the world as they vibrate through the Earth. The South Pole Remote Earth Science Observatory is located eight kilometers from the South Pole and the new seismometers have been installed roughly 300 meters beneath the surface of the continental East Antarctic ice sheet in specially drilled boreholes.

Black holes seeding universe with the stuff of life?

Supermassive black holes, notorious for ripping apart and swallowing stars, might also help seed interstellar space with the elements necessary for life, such as hydrogen, carbon, oxygen and iron, scientists say. Using NASA’s Chandra X-ray Observatory and ESA’s XMM-Newton satellite, scientists at Penn State University and the Massachusetts Institute of Technology found evidence of high-speed winds blowing away copious amounts of gas from the cores of two quasar galaxies, which are thought to be powered by black holes.

Researchers discover gene that contributes to sense of balance

Researchers have discovered a gene that appears to be critical for maintaining a healthy sense of balance in mice. The study, led by a team at Washington University School of Medicine in St. Louis, appears in the April 1 issue of the journal Human Molecular Genetics and online March 24. “Loss of balance is a significant problem in the elderly because it can lead to dangerous falls and injuries,” says one of the study’s principal investigators, David M. Ornitz, M.D., Ph.D., professor of molecular biology and pharmacology at the School of Medicine. “Loss of balance also is a problem for astronauts following exposure to zero gravity. Now that we’ve discovered this new gene, we can begin to understand the mechanisms that allow the body to sense gravity and maintain balance.”

Quick action by astronomers leads to new insights on mysterious gamma-ray bursts

Scientists “arriving quickly on the scene” of an October 4 gamma-ray burst have announced that their rapid accumulation of data has provided new insights about this exotic astrophysical phenomenon. The researchers have seen, for the first time, ongoing energizing of the burst afterglow for more than half an hour after the initial explosion. The findings support the “collapsar” model, in which the core of a star 15 times more massive than the sun collapses into a black hole. The black hole’s spin, or magnetic fields, may be acting like a slingshot, flinging material into the surrounding debris.