Antibodies critical for fighting West Nile Virus infection

Researchers have found that immune cells called B cells and the antibodies they produce play a critical early role in defending the body against West Nile Virus. The results are published in the February issue of the Journal of Virology. Mice that lacked B cells and antibodies were completely unable to combat the virus. They developed serious brain and spinal-cord infection and ultimately died.

Researchers decipher cause of parasite’s worldwide spread

Research reveals that a unique combination of genes inherited less than 10,000 years ago allows the parasite responsible for toxoplasmosis to infect virtually all warm-blooded animals. Parasite life cycles are complex and thought to develop over long periods with their hosts. This study reveals that parasites sometimes adapt rapidly to new hosts, indicating that host-parasite relationships may not always represent stable, long-term associations.

Researchers Decipher Cause of Parasite’s Worldwide Spread

Research at Washington University School of Medicine in St. Louis reveals that a unique combination of genes inherited less than 10,000 years ago allows the parasite responsible for toxoplasmosis to infect virtually all warm-blooded animals. Parasite life cycles are complex and thought to develop over long periods with their hosts. This study reveals that parasites sometimes adapt rapidly to new hosts, indicating that host-parasite relationships may not always represent stable, long-term associations.

New hope for Alzheimer’s vaccine

Researchers have discovered a way to refine an experimental Alzheimer’s vaccine, a finding that could pave the way for new treatment and prevention of the debilitating disease that affects people’s ability to think and recall information. Alzheimer’s occurs when toxic biochemical compounds known as amyloid-beta peptides accumulate in the brain, forming plaque deposits and injuring nerve cells, which eventually causes dementia. In 2000, researchers at the Centre for Research in Neurodegenerative Diseases published a paper showing how the amyloid-beta peptide vaccine blocked the production of the plaques and reversed learning impairment. The vaccine stimulates the body’s immune system into forming antibodies against the plaques in the brain, but it also caused inflamation. This new research claims to have found a way to better isolate the active epitope detected by antibodies. After testing a more refined, targeted amyloid-beta vaccine on mice, the scientists found that the antibodies generated by the vaccine cleared away the plaques — improving cognitive function in the mice and leaving no evidence of brain inflammation.