Scientists have uncovered the genes that enable plants to interact with beneficial soil dwelling fungi and to access phosphate delivered to the roots by these fungi — a first step, they say, toward enhancing the beneficial relationship for crop plants , while reducing fertilizer use and phosphate pollution in the environment.
From American Society of Plant Biologists :
Plant gene discovery could enhance plant growth, reduce fertilizer needs and phosphate pollution
Scientists at the Boyce Thompson Institute for Plant Research at Cornell University have uncovered the genes that enable plants to interact with beneficial soil dwelling fungi and to access phosphate delivered to the roots by these fungi — a first step, they say, toward enhancing the beneficial relationship for crop plants , while reducing fertilizer use and phosphate pollution in the environment.
Discovery of the phosphate-transport genes was announced today (July 28, 2004) by Maria Harrison, a senior scientist at the Ithaca, N.Y.-based research institute, during the American Society of Plant Biologists’ annual meeting in Lake Buena Vista, Fla.
She said considerable work lies ahead before scientists learn to exploit the genetic discovery and harness the potential of this naturally occurring, symbiotic fungus-plant association, but that the payoff to growers and to the environment could be substantial: more efficient plant growth with less phosphorus-based fertilizer, and a subsequent reduction of phosphate runoff in surface water.
”AM fungi are very efficient at helping plants absorb phosphorus from the soil, and managing this symbiotic association is an essential part of sustainable agriculture” Harrison explained in an interview before plant biologists’ meeting. ”Phosphorus is a nutrient wherever it goes, and in our lakes and rivers it often nourishes undesirable algae. Agriculture is a major source of phosphate pollution, so anything we biologists can do to improve phosphate uptake in crop plants will make agriculture more sustainable and less harmful to the environment,” she predicted. A thorough understanding of how symbiotic fungi work with plants to assist the uptake of phosphorous and other nutrients from the soil is an important goal in plant biology with relevance to agriculture and ecology. Dr. Maria Harrison?s identification of the phosphorous uptake protein in the plasma membrane of the plant is an important step toward this goal. Now her research group is focused on learning which genes in the plant play a role in establishing the symbiotic relationship and of those that regulate the transfer of phosphorous into the plant.
In addition to advancing our understanding of nutrient uptake by plants, this work reveals the molecules behind the scenes of a fascinating example of two species interacting to the benefit of both. Dr. Maria Harrison of the Boyce Thompson Institute for Plant Research will present her work 2 p.m. Wednesday, July 28 at the ASPB Annual Meeting. The meeting will be held at Disney’s Coronado Springs Resort & Convention Center in Lake Buena Vista near Orlando. Dr. Harrison’s research was funded by the National Science Foundation Plant Genome Program and The Samuel Roberts Noble Foundation.