New! Sign up for our email newsletter on Substack.

Mathematicians model heat flow in human tears

Mathematicians from the University of Delaware have created a new model of the fluid dynamics and heat flow in human tears. When people blink their eyes, a thin liquid film is spread across the surface of the eye.

Experiments show that the surface of the tear film cools slightly after each blink, and for dry eye patients the rate of cooling can be even higher. The Delaware researchers set out to create a heat transfer model with enough detail to capture this experimentally observed cooling.

Models that set a fixed temperature for the eyeball show the temperature of the tear film actually increasing slightly after each blink. A model that incorporates heat transfer into the eye through a thin layer likewise shows a temperature increase during the interblink period. But when the researchers incorporated heat transfer into a sufficiently thick region of tissue under the tear film, the model produced results comparable to the rate of cooling observed in vivo.

Future work by the team may touch on better ways to model the lipid component of tears and the temperature dynamics during the motion of a blinking eyelid.

Fuel Independent Science Reporting: Make a Difference Today

If our reporting has informed or inspired you, please consider making a donation. Every contribution, no matter the size, empowers us to continue delivering accurate, engaging, and trustworthy science and medical news. Independent journalism requires time, effort, and resources—your support ensures we can keep uncovering the stories that matter most to you.

Join us in making knowledge accessible and impactful. Thank you for standing with us!



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.