Hyperoxia may slow formation of wrinkles

It’s no secret that UVB radiation from the sun causes wrinkles. However, a Japanese study published in the American Journal of Physiology — Regulatory, Integrative and Comparative Physiology (http://ajpregu.physiology.org/) indicates that oxygen may help combat the formation of wrinkles by lessening tissue damage done by UVB rays.

In the study, mice who were placed in an oxygen chamber after exposure to UVB radiation developed fewer wrinkles and showed fewer signs of tissue damage than mice who were exposed to UVB radiation alone.

Marmots can teach us about obesity

A nutrient that’s common to all living things can make hibernating marmots hungry – a breakthrough that could help scientists understand human obesity and eating disorders, according to a new study by a Colorado State University biologist.

The study appears in the current issue of the Journal of Experimental Biology. The full paper is available at http://jeb.biologists.org/cgi/reprint/213/12/2031.

Professor Greg Florant discovered he could slowly release a molecule called AICAR into yellow-bellied marmots that activates a neurological pathway driving food intake and stimulates appetite. The pathway, which shuts down during hibernation, relies on an important balance between two energy molecules — ATP and AMP. The lower the ratio between the two cellular molecules, the lower the energy in the cell and the more the appetite is stimulated.

Without this artificial stimulation, awake, hibernating marmots do not eat – even when researchers place food in front of them.

“The experimental group started to feed because they thought they had this energy deficit,” Florant said. “Then when the pumps dispensing the molecule finally stopped, the animals went right back into hibernation. That suggests to us that the animals are still sensing energy levels within cells during the hibernation period.”

Tissue samples taken from marmots in Florant’s lab allow researchers to identify biochemical processes and genes that are active during hibernation – as opposed to genes that are active when they’re feeding or engaging in other behaviors.

The American Physiological Society has called hibernators such as marmots, bears, woodchucks, hedgehogs and lemurs “medical marvels” because they can turn off their appetites and slow their breathing to a point that would be lethal to other animals.

Marmots typically hibernate for as many as six or seven months.

“You can’t eat if you’re asleep,” Florant said. “We’ve discovered that perhaps nutrients within the brain, such as fatty acids, can alter the food intake pathway, which normally shuts down when marmots hibernate. The perceived drop in energy nutrients (i.e. low ATP) makes the animals think they’ve got an energy deficit and want to eat.”

Florant said he’ll conduct additional research this summer to determine whether the reverse is true: Can he stop the animals from eating when they’re not hibernating?

His team will also identify neurons in the particular areas of the hypothalamus that are involved in food intake in animals. The hypothalamus is one of the master regulator areas of the brain and controls such activities as food intake, sex and temperature regulation.

“We know which neurons are driving this process,” he said. “We’re just trying to identify them within the marmot and distinguish what’s different about the neurons in a marmot compared to a rat or other animal that does not go into hibernation.”

Natural S-Equol suggested as critical component in SE5-OH for reducing menopausal hot flushes

Anaheim, Calif. (April 30, 2010) — Natural S-equol, a novel soy germ-based compound, is very likely the primary ingredient for reducing hot flushes in the dietary supplement SE5-OH, which is under development for reduction of menopause symptoms, according to pre-clinical efficacy data from studies using an animal model presented at the Experimental Biology (EB) 2010 annual meeting.

The story of the development of noninvasive heart care

BETHESDA, Md. (September 14, 2009) — Fifty-one years ago the average American home cost $30,000, Elvis Presley wooed listeners with Hard Headed Woman, and the hula hoop was introduced. That same year, 1958, a team comprised of a groundbreaking engineer — Dean Franklin — in concert with two exceptional physicians — Drs.

Estrogen can reduce stroke damage by inactivating protein

AUGUSTA, Ga. — Estrogen can halt stroke damage by inactivating a tumor-suppressing protein known to prevent many cancers, Medical College of Georgia researchers say.

“Our research suggests that estrogen suppresses p53 after stroke, which stops the damage,” says Limor Raz, a fourth-year Ph.D. student in the MCG School of Graduate Studies.