New! Sign up for our email newsletter on Substack.

Controlling cell turnover in the intestinal lining

The lining of the intestine is the most rapidly-renewing tissue in the body. Routine shedding of epithelial cells from this lining is a key element of tissue turnover, and is thus essential to maintaining optimal health. Altered shedding is associated with multiple disorders, ranging from inflammatory bowel disease (IBD) to colorectal cancer.

Researchers at The Saban Research Institute of Children’s Hospital Los Angeles (CHLA) looked at ways such shedding and cell regeneration are controlled in healthy intestine. Their study, currently published online by the Journal of Cell Science, showed that shedding is negatively regulated by epidermal growth factor (EGF) – an important driver of intestinal growth and differentiation.

“We found that, surprisingly, EGF suppresses shedding of epithelial cells in the intestine through a selective, MAPK-dependent signaling pathway,” said CHLA researcher Mark R. Frey, who is also an assistant professor of Pediatrics and Biochemistry at the Keck School of Medicine of the University of Southern California. His team used coordinated in vitro models (cell culture and 3-D culture systems) to study the effects of blocking MAPK pathways. Similar results were found in vivo, in a novel zebrafish model for intestinal epithelial shedding.

This insight could identify potential targets for correcting pathological shedding in diseases such as IBD.

Fuel Independent Science Reporting: Make a Difference Today

If our reporting has informed or inspired you, please consider making a donation. Every contribution, no matter the size, empowers us to continue delivering accurate, engaging, and trustworthy science and medical news. Independent journalism requires time, effort, and resources—your support ensures we can keep uncovering the stories that matter most to you.

Join us in making knowledge accessible and impactful. Thank you for standing with us!



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.