New! Sign up for our email newsletter on Substack.

How nerves may lose their insulation

Charcot-Marie-Tooth (CMT) disease is the most common inherited disorder of the peripheral nerves in humans, affecting 1 in every 2,500 people. There is no cure for the disease, which causes severe disability due to disruptions in myelin, the protective insulation that covers nerve fibers.

The most common form of CMT is associated with gene duplication and point mutations in the gene for peripheral myelin protein 22 (PMP22). Little is known about the functional role of PMP22 in myelination, however, or how genetic changes in the protein cause disease.

Now Carlos Vanoye, PhD, at Northwestern University Feinberg School of Medicine, Vanderbilt University’s Bruce Carter, PhD, and colleagues provide evidence that PMP22 regulates calcium homeostasis in the Schwann cells that wrap around nerve fibers to form the myelin sheath.

Because high levels of intracellular calcium ions in Schwann cells can induce demyelination, these results, reported August 9 in the Journal of Biological Chemistry, provide novel insights into how genetically altered PMP22 contributes to the pathogenesis of CMT.

This research was supported by the National Institutes of Health (grants NS058815, NS095989, NS038220, NS102365 and NS066927).

Fuel Independent Science Reporting: Make a Difference Today

If our reporting has informed or inspired you, please consider making a donation. Every contribution, no matter the size, empowers us to continue delivering accurate, engaging, and trustworthy science and medical news. Independent journalism requires time, effort, and resources—your support ensures we can keep uncovering the stories that matter most to you.

Join us in making knowledge accessible and impactful. Thank you for standing with us!



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.