Skip to content
ScienceBlog.com
  • Featured Blogs
    • EU Horizon Blog
    • ESA Tracker
    • Experimental Frontiers
    • Josh Mitteldorf’s Aging Matters
    • Dr. Lu Zhang’s Gondwanaland
    • NeuroEdge
    • NIAAA
    • SciChi
    • The Poetry of Science
    • Wild Science
  • Topics
    • Brain & Behavior
    • Earth, Energy & Environment
    • Health
    • Life & Non-humans
    • Physics & Mathematics
    • Space
    • Technology
  • Our Substack
  • Follow Us!
    • Bluesky
    • Threads
    • FaceBook
    • Google News
    • Twitter/X
  • Contribute/Contact

computational physics

An early-career physicist mathematically connects timelike and spacelike form factors, opening the door to further insights into the inner workings of the strong force. A new lattice QCD calculation connects two seemingly disparate reactions involving the pion, the lightest particle governed by the strong interaction. One reaction is known as the spacelike process, where an electron is bounced off a pion. The second reaction, known as the timelike process, is when an electron and antielectron collide, annihilate each other, and produce two pions. The lattice QCD numerical calculation is simultaneously able to describe the spacelike and timelike processes, demonstrating the interconnectedness of different reactions described by QCD. While this connection had been observed experimentally, now physicists have the math to corroborate it.

Physicists Crack the Code Between Matter and Antimatter Collisions in Groundbreaking Calculation

Categories Physics & Mathematics
The computer vision simulation the researchers developed, compared with a photo from the explosion of Mt. St. Helens.

Breakthrough in Digital Fluid Simulation Recreates Mount St. Helens Eruption

Categories Physics & Mathematics, Technology
An illustration of a quantum system that was simulated by both classical and quantum computers. The highlighted sections show how the influence of the system’s components is confined to nearby neighbors.

The surprising reason a classical computer beat a quantum computer at its own game

Categories Physics & Mathematics, Technology
Contour plots (A, C, E, G) compare the input conditions, traditional finite difference method solutions, and the solutions generated by model B3, the most advanced model in the study. Velocity profiles (B, D, F, H) display detailed velocity information at specific cross-sections of the simulation domain.

Deep Learning Accelerates Fluid Dynamics Simulations, Solving Complex Equations 1,000 Times Faster

Categories Physics & Mathematics, Technology

Comments

  • Melissa Baez on Medicinal Mushrooms Show Promise for Treating Brain Disorders
  • Melissa Baez on Ultra-Processed Foods May Speed Up Early Signs of Parkinson’s
  • ScienceBlog.com on Scientists Capture For First Time Mind-Bending Einstein Effect
  • Jeffrey on Medicinal Mushrooms Show Promise for Treating Brain Disorders
  • Mike on Scientists Capture For First Time Mind-Bending Einstein Effect
Substack subscription form sign up

© 2025 ScienceBlog.com | Follow our RSS / XML feed