Skip to content
ScienceBlog.com
  • Featured Blogs
    • EU Horizon Blog
    • ESA Tracker
    • Experimental Frontiers
    • Josh Mitteldorf’s Aging Matters
    • Dr. Lu Zhang’s Gondwanaland
    • NeuroEdge
    • NIAAA
    • SciChi
    • The Poetry of Science
    • Wild Science
  • Topics
    • Brain & Behavior
    • Earth, Energy & Environment
    • Health
    • Life & Non-humans
    • Physics & Mathematics
    • Space
    • Technology
  • Our Substack
  • Follow Us!
    • Bluesky
    • Threads
    • FaceBook
    • Google News
    • Twitter/X
  • Contribute/Contact

particle interactions

An artist’s impression of a quantum electrodynamics simulation using 100 qubits of an IBM quantum computer. The spheres and lines denote the qubits and connectivity of the IBM quantum processor; gold spheres denote the qubits used in the simulation.

100-Qubit Quantum Leap: Scientists Harness Quantum Computers to Model the Universe’s Fundamental Physics

Categories Physics & Mathematics, Technology
An early-career physicist mathematically connects timelike and spacelike form factors, opening the door to further insights into the inner workings of the strong force. A new lattice QCD calculation connects two seemingly disparate reactions involving the pion, the lightest particle governed by the strong interaction. One reaction is known as the spacelike process, where an electron is bounced off a pion. The second reaction, known as the timelike process, is when an electron and antielectron collide, annihilate each other, and produce two pions. The lattice QCD numerical calculation is simultaneously able to describe the spacelike and timelike processes, demonstrating the interconnectedness of different reactions described by QCD. While this connection had been observed experimentally, now physicists have the math to corroborate it.

Physicists Crack the Code Between Matter and Antimatter Collisions in Groundbreaking Calculation

Categories Physics & Mathematics
The study found that negatively charged silica microparticles suspended in water attracted each other to form hexagonally arranged clusters. Image credit: Cover image: Zhang Kang.

It’s not only opposites that attract – new study shows like-charged particles can come together

Categories Physics & Mathematics
The house-size Solenoidal Tracker at RHIC (STAR) detector at the Relativistic Heavy Ion Collider (RHIC) acts like a giant 3D digital camera to track particles emerging from particle collisions at the center of the detector.

New type of entanglement lets scientists ‘see’ inside nuclei

Categories Physics & Mathematics, Technology

Comments

  • Melissa Baez on Ultra-Processed Foods May Speed Up Early Signs of Parkinson’s
  • ScienceBlog.com on Scientists Capture For First Time Mind-Bending Einstein Effect
  • Jeffrey on Medicinal Mushrooms Show Promise for Treating Brain Disorders
  • Mike on Scientists Capture For First Time Mind-Bending Einstein Effect
  • Mitchel on Medicinal Mushrooms Show Promise for Treating Brain Disorders
Substack subscription form sign up

© 2025 ScienceBlog.com | Follow our RSS / XML feed