Skip to content
ScienceBlog.com
  • Featured Blogs
    • EU Horizon Blog
    • ESA Tracker
    • Experimental Frontiers
    • Josh Mitteldorf’s Aging Matters
    • Dr. Lu Zhang’s Gondwanaland
    • NeuroEdge
    • NIAAA
    • SciChi
    • The Poetry of Science
    • Wild Science
  • Topics
    • Brain & Behavior
    • Earth, Energy & Environment
    • Health
    • Life & Non-humans
    • Physics & Mathematics
    • Space
    • Technology
  • Our Substack
  • Follow Us!
    • Bluesky
    • Threads
    • FaceBook
    • Google News
    • Twitter/X
  • Contribute/Contact

telescope

This side-by-side comparison shows a Spitzer Space Telescope Infrared Array Camera image of HH 49/50 (left) versus a Webb image of the same object (right) using the NIRCam (Near-infrared Camera) instrument and MIRI (Mid-infrared Instrument). The Webb image shows intricate details of the heated gas and dust as the protostellar jet slams into the material. Webb also resolves the “fuzzy” object located at the tip of the outflow into a distant spiral galaxy. The Spitzer image shows 3.6-micron light in blue, the 4.5-micron in green, and the 8.0-micron in red (IRAC1, IRAC2, IRAC4). In the Webb image, blue represents light at 2.0-microns (F200W), cyan represents light at 3.3-microns (F335M), green is 4.4-microns (F444W), orange is 4.7-microns (F470N), and red is 7.7-microns (F770W).

NASA’s Webb Telescope Unmasks True Nature of the Cosmic Tornado

Categories Physics & Mathematics, Space
WEAVE data overlaid on a James Webb Space Telescope image of Stephan's Quintet, with green contours showing radio data from the Low Frequency Array (LOFAR) radio telescope. The orange and blue colours follow the brightness of Hydrogen-alpha obtained with the WEAVE LIFU, which trace where the intergalactic gas is ionised. The hexagon denotes the approximate coverage of the new WEAVE observations of the system, which is 36 kpc wide (similar in size to our own galaxy, the Milky Way).

Galaxy’s 2 Million MPH Crash Creates Cosmic ‘Sonic Boom’

Categories Physics & Mathematics, Space
Cradled within the fiery petals of the Rosette Nebula is NGC 2244, the young star cluster which it nurtured. The cluster’s stars light up the nebula in vibrant hues of red, gold and purple, and opaque towers of dust rise from the billowing clouds around its excavated core. This image, captured by 570-megapixel Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the U.S. National Science Foundation Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory, a Program of NSF NOIRLab, is being released in celebration of NOIRLab’s fifth anniversary.

Radiant Stars at the Heart of a Cosmic Rose

Categories Space
JPL scientist Vanessa Bailey stands behind the Nancy Grace Roman Coronagraph, which has been undergoing testing at JPL. About the size of a baby grand piano, the Coronagraph is designed to block starlight and allow scientists to see the faint light from planets outside our solar system. Credit: NASA/JPL-Caltech

NASA Puts Next-Gen Exoplanet-Imaging Technology to the Test

Categories Space

Comments

  • ScienceBlog.com on Scientists Capture For First Time Mind-Bending Einstein Effect
  • Mike on Scientists Capture For First Time Mind-Bending Einstein Effect
  • Mitchel on Medicinal Mushrooms Show Promise for Treating Brain Disorders
  • BPD98 on Physicists Capture First-Ever Images of Atoms Interacting in Free Space
  • G ODonnell on Surprising Myths Shaping Our Mental Health Beliefs
Substack subscription form sign up

© 2025 ScienceBlog.com | Follow our RSS / XML feed