New! Sign up for our email newsletter on Substack.

Device can extract human DNA with full genetic data in minutes

Take a swab of saliva from your mouth and within minutes your DNA could be ready for analysis and genome sequencing with the help of a new device.

University of Washington engineers and NanoFacture, a Bellevue, Wash., company, have created a device that can extract human DNA from fluid samples in a simpler, more efficient and environmentally friendly way than conventional methods.

The device will give hospitals and research labs a much easier way to separate DNA from human fluid samples, which will help with genome sequencing, disease diagnosis and forensic investigations.

โ€œItโ€™s very complex to extract DNA,โ€ said Jae-Hyun Chung, a UW associate professor of mechanical engineering who led the research. โ€œWhen you think of the current procedure, the equivalent is like collecting human hairs using a construction crane.โ€

This technology aims to clear those hurdles. The small, box-shaped kit now is ready for manufacturing, then eventual distribution to hospitals and clinics. NanoFacture, a UW spinout company, signed a contract with Korean manufacturer KNR Systems last month at a ceremony in Olympia, Wash.

The UW, led by Chung, spearheaded the research and invention of the technology, and still manages the intellectual property.

Separating DNA from bodily fluids is a cumbersome process thatโ€™s become a bottleneck as scientists make advances in genome sequencing, particularly for disease prevention and treatment. The market for DNA preparation alone is about $3 billion each year.

Conventional methods use a centrifuge to spin and separate DNA molecules or strain them from a fluid sample with a micro-filter, but these processes take 20 to 30 minutes to complete and can require excessive toxic chemicals.

UW engineers designed microscopic probes that dip into a fluid sample โ€“ saliva, sputum or blood โ€“ and apply an electric field within the liquid. That draws particles to concentrate around the surface of the tiny probe. Larger particles hit the tip and swerve away, but DNA-sized molecules stick to the probe and are trapped on the surface. It takes two or three minutes to separate and purify DNA using this technology.

โ€œThis simple process removes all the steps of conventional methods,โ€ Chung said.

The hand-held device can clean four separate human fluid samples at once, but the technology can be scaled up to prepare 96 samples at a time, which is standard for large-scale handling.

DNA_device-300x272The tiny probes, called microtips and nanotips, were designed and built at the UW in a micro-fabrication facility where a technician can make up to 1 million tips in a year, which is key in proving that large-scale production is feasible, Chung said.

Engineers in Chungโ€™s lab also have designed a pencil-sized device using the same probe technology that could be sent home with patients or distributed to those serving in the military overseas. Patients could swab their cheeks, collect a saliva sample, then process their DNA on the spot to send back to hospitals and labs for analysis.

This could be useful as efforts ramp up toward sequencing each personโ€™s genome for disease prevention and treatment, Chung said.

The market for this device isnโ€™t developed yet, but Chungโ€™s team will be ready when it is. Meanwhile, the larger device is ready for commercialization, and its creators have started working with distributors.

A UW Center for Commercialization grant of $50,000 seeded initial research in 2008, and since then researchers have received about $2 million in funding from the National Science Foundation and the National Institutes of Health. Sang-gyeun Ahn, a UW assistant professor of industrial design, crafted the prototype.

There's no paywall here

If our reporting has informed or inspired you, please consider making a donation. Every contribution, no matter the size, empowers us to continue delivering accurate, engaging, and trustworthy science and medical news. Independent journalism requires time, effort, and resourcesโ€”your support ensures we can keep uncovering the stories that matter most to you.

Join us in making knowledge accessible and impactful. Thank you for standing with us!