New! Sign up for our email newsletter on Substack.

When she’s turned on, some of her genes turn off

When a female is attracted to a male, entire suites of genes in her brain turn on and off, show biologists from The University of Texas at Austin studying swordtail fish.

Molly Cummings and Hans Hofmann found that some genes were turned on when females found a male attractive, but a larger number of genes were turned off.

โ€œWhen females were most excitedโ€”when attractive males were aroundโ€”we observed the greatest down regulation [turning off] of genes,โ€ said Cummings, assistant professor of integrative biology. โ€œItโ€™s possible that this could lead to a release of inhibition, a transition to being receptive to mating.โ€

The same genes that turned on when the females were with attractive males turned off when they were with other females and vice versa.

This is one of few studies to link changes in the expression of genes with changes in an individualโ€™s behavior in different social situations.

Cummings and Hofmann suggest that the gene sets they studied could be involved in orchestrating mating responses in all vertebrates.

Their research appeared online December 4 in Proceedings of the Royal Society of London B.

Female swordtails are attracted to males that are large and have ornaments on their bodies, such as long tails and striking coloration.

In experiments, females were placed in the center of a tank separated into three zones for 30 minutes. When an attractive male was in one of the adjacent zones, females showed typical behaviors indicating that they had chosen the male for mating. The females were also tested with other females, with unattractive smaller males, and in empty tanks.

The researchers immediately extracted RNA from the females and used gene array technology to identify genes that were being up regulated (turned on) and down regulated (turned off) in the femalesโ€™ brains.

The researchers looked at more than 3,000 genes and found that 77 were involved in the femalesโ€™ mate choice behavior.

โ€œWeโ€™ve found a number of new genes that havenโ€™t been implicated in mating behavior before,โ€ said Hofmann, assistant professor of integrative biology.

The genes turned on or off very quickly during the 30-minute testing period.

โ€œWhat we have not appreciated until now is how dynamic the genome is,โ€ said Hofmann. โ€œIt is constantly changing and even in a very short period of time, 10 percent of the protein-coding genome can change its activity. We now have a genomic view of these dynamic processes within a social context.โ€

The biologists next seek to identify specific regions in the brain where the genes are expressed. They also aim to enhance or inhibit specific genes and observe the resulting behavioral change.

โ€œWeโ€™d like to take a female who is a โ€˜high preference galโ€™ and make her a โ€˜low preference galโ€™ and vice versa,โ€ said Cummings.

She said that gaining a better understanding of individual expression of behavior and its underlying genetic causes can shed light on how behavior drives and maintains the evolution and diversification of species.

From http://www.utexas.edu

There's no paywall here

If our reporting has informed or inspired you, please consider making a donation. Every contribution, no matter the size, empowers us to continue delivering accurate, engaging, and trustworthy science and medical news. Independent journalism requires time, effort, and resourcesโ€”your support ensures we can keep uncovering the stories that matter most to you.

Join us in making knowledge accessible and impactful. Thank you for standing with us!



Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.